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In Part 1 a study is made of the internal solitary wave on the pycnocline of a 
continuously stratified fluid. A Korteweg-de Vries (KdV) equation for the ‘ interfacial ’ 
displacement is developed following Benney’s method for long nonlinear waves. 
Experiments were conducted in a long wave tank with the pycnocline at several 
different depths below the free surface, while keeping the total depth approximately 
constant. A step-like pool of light water, trapped behind a sliding gate, served as the 
initial disturbance condition. The number of solitons generated was verified to satisfy 
the prediction of inverse-scattering theory. The fully developed soliton was found to 
satisfy the KdV theory for all ratios of upper-layer thickness to total depth. 

In Part 2 of this study we investigate experimentally the evolution and breaking 
of an internal solitary wave as it shoals on a sloping bottom connecting the deeper 
region where the waves were generated to a shallower shelf region. It is found through 
quantitative measurements that the onset of wave-breaking was governed by shear 
instability, which was initiated when the local gradient Richardson number became 
less than i. The internal solitary wave of depression was found to steepen at the back 
of the wave before breaking, in contrast with waves of elevation. Two slopes were 
used, with ratios 1:16 and 1:9, and the fluid was a Boussinesq fluid with weak 
stratification using brine solutions. 

Preliminary remarks 
Trains of internal solitary waves of very large amplitudes ( - 60 m) were quantit- 

atively documented by Osborne and others in 1976 in the Andaman Sea (see Osborne 
& Burch 1980) in water of total depth of over 1000 m. The waves have maximum 
amplitude at the midthermocline level located a t  approximately 150 m below the free 
surface. Observations of similar waves have also been reported by Ape1 (1981) in the 
Sulu Sea from satellite pictures, and others have reported them to be present in the 
Straits of Gibraltar, in the Gulf of Maine and other regions of the world’s coastal 
oceans. The waves in the Andaman Sea and in the Sulu Sea are known to dissipate 
in the shoaling region along the coast. 

In the present paper we study the generation, propagation, attenuation, shoaling 
and breaking of the internal solitary waves on the pycnocline, for a continuously 
stratified fluid of the ‘thermocline ’ type, principally through laboratory experiments, 
complemented where applicable by theoretical considerations. The generation, initial 

t Permanent address: Institut de MBcanique de Grenoble, France. 
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breaking and propagation are first studied in water of constant total depth, and the 
results presented in Part  1 .  The shoaling, breaking, reflection and transmission are 
presented in Part  2. 

PART 1. THE KDV THEORY A N D  ITS VERIFICATION 
1. Introduction 

Internal solitary waves in a two-layered fluid of constant total depth have been 
studied by Keulegan (1953), Long (1956,1965) and Benjamin (1966), and laboratory 
experiments have recently been undertaken by Koop & Butler (1981) for two 
immiscible fluidlayerswith alargedensity difference. Alimitednumber ofexperiments, 
using a similar type of stratification as the present study, have also been reported 
by Segur & Hammack (1982). In  this part of the paper we describe a laboratory 
method for the generation of internal solitary waves on the pycnocline whereby the 
amplitude and the number of waves can be easily controlled and predetermined. 
Initial breaking in the formation region of the waves is discussed. The number of 
waves generated are checked against inverse-scattering theory. The wave speed and 
form distribution of the wave so generated are measured by hot-film anemometry 
and an ‘interface follower ’, and compared with theoretical results. The theoretical 
results are derived using a hyperbolic-tangent or ‘thermocline ’ type density stratifi- 
cation, from a method introduced by Benney (1966). The method leads to the 
Korteweg-de Vries (KdV) equation as the evolution equation of the internal-wave 
modes, of which the lowest mode is of the greatest interest. For the lowest mode the 
KdV equation for the displacement of the interfacial isopycnic is obtained. It is shown 
that, in the limit of zero pycnocline thickness, the conventional two-layer model, used 
by previous authors, is recovered. On the other hand, for finite pycnocline thicknesses, 
the quantitative results are substantially different from those of the two-layered 
model for all important wave parameters. The experimental results are given for the 
lowest internal mode for a number of nominal thickness ratios between the upper and 
lower layers, ranging from approximately 1:4 to  1:36.t It will be shown that for 
all thickness ratios the waveform is described by the sech2 distribution of the KdV 
theory, and the wavelength us. amplitude and the wave-speed v5. amplitude 
relationships of the KdV theory are satisfied uniformly to a good degree of precision. 

2. Theoretical aspects 
The theoretical model we use is based on a method developed by Benney (1966) 

to study long finite-amplitude waves. The method is applied to a fluid of finite total 
depth D, with a hyperbolic-tangent density profile, or ‘thermocline ’ profile, defined 
as 

p ( z )  = po( 1 --a tanh az), ( 1 )  

t It should be noted that when one layer is infinitely deep a different scaling law and an equation 
different from the KdV equation have been proposed by Benjamin (1967). The governing equation 
is known in the literature as the Renjamin-Ono (BO) equation. The waveform follows a Lorentzian 
distribution. Theoretical models known as ‘ finite-depth ’ models have also been proposed by others 
when one layer is much deeper than the other. These latter models are essentially small 
perturbations of the BO model and are singular in the KdV limit. The scaling laws and waveform 
profiles from all these models have never been confirmed experimentally. 
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FIGURE 1. Typical density profile measured by conductivity probe. 

where po = t(pl +p,) ,  rn = (pz-p1)/2p0 (p, and p, being respectively the densities of 
the upper and lower layers), z is the vertical coordinate, the origin of which is located 
at  the midpycnocline, or interface, level, and 01-l is a representative half-depth of the 
pycnocline as shown in figure 1. The nominal thicknesses h, and h, of the upper and 
lower layers respectively are defined from this interface level, and the upper ( z  = h,) 
and lower ( z  = -h,) boundaries are assumed to be rigid. 

The basic idea is to look for a stream function written as a power series in two small 
parameters, which are equated through the basic KdV scaling law relating the 
amplitude to the wavelength; in other words, the characteristic wavelength varies 
inversely as the square root of the wave amplitude. To first order in e (the wave 
amplitude normalized by D )  a KdV equation is obtained. For a continuous 
stratification the problem reduces to finding the solution of the modal function $(z)  
at the zeroth order in both small parameters, from the zeroth-order eigenvalue 
problem given by - 

( P $ , & - q $  = 0, $(h,)  = $( -h,)  = 0, (2) 
CO 

where the subscripts denote differentiation, g is the acceleration due to gravity and 
co is the zeroth-order (i.e. linear) wave speed. The eigenvalue problem admits a 
denumerably infinite set of eigenfunctions and corresponding eigenvalue ( c ~ ) ~ .  The 
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Case 
(mode 1 )  r 5Ib 
h,lD = h 

a D  = 56 - 9.0552 -0.0129 
a D  = 28 -7.0621 -0.0152 

aD = 56 -4.3011 -0.0220 
aD = 28 -4.1538 -0.0236 

h,/D = A 

h,lD = r;k 
aD = 56 -2.5398 -0.0296 
aD = 28 -2.5052 - 0.03 10 

4.526 
4.323 4.791 

6.314 
6.096 6.513 

I .475 
7.272 7.635 

TABLE 1. Theoretical results for r ,  s/C0 and co for 1st mode 

lowest mode has a maximum at the interface and corresponds to the interfacial 
internal wave. The next mode corresponds to the bulge-type wave. The solitary wave 
associated with the latter mode has been investigated by Kao &, Pao (1979) for the 
case where h, = h,. I n  the present investigation the bulge-type wave will not be 
pursued, and attention is confined to the lowest mode. The eigenvalue problem ( 2 )  
is solved numerically in a normalized coordinate, with z" = z /D  = 0 a t  the bottom and 
E =  1 at  the top, by finite-difference approximation and inversion of the resulting 
tridiagonal matrices (see Hildebrand 1968) for different values of h,, h, and a-l. The 
calculated values of co for the lowest mode are shown in table 1,  where 'two-layer' 
co (hereinafter denoted by Co) refers to the linear interfacial long-wave speed for two 
discrete layers and is given by 

- c o =  ( g-- & h 2 P a p , P l ) i  , (3) 

It can be seen that the effect of the finite transition pycnocline thickness is to decrease 
co so that co < Co. Such a decrease is significant for the pycnocline thickness in most 
laboratory experiments using salt solutions, and is very much more significant in the 
ocean pycnocline. Figure 2 (a)  shows a typical normalized eigenfunction, for the case 
h, /D = and aD = 28.  Figure 2 ( b )  shows a typical horizontal velocity profile 
associated with the vertical derivative of the eigenfunction in figure 2 (a) .  It should 
be noted that away from the pycnocline the velocities become constant, independent 
of depth, with values proportional to  D/h, and - D/h,  in the upper and lower layers 
respectively. A distinctive aspect of the horizontal velocity profile is the shear a t  the 
pycnocline level. This shear is a characteristic feature of the internal solitary wave 
on the pycnocline that is absent in the classical free-surface solitary wave. It is 
expected to  play an important and deciding role in wave-breaking when the 
amplitude of the wave becomes large or when solitary waves of depression shoal on 
a slope. This mechanism is also totally different from the breaking of a free-surface 
solitary wave. 

Table 1 also presents the corresponding values of the parameters r and s/Eo, which 
are given by: 

I 

(4) CO 
[' p'$g d i  c" jol p'$2dz" 

8 = -0 , c o = -  
( m i '  

r = -- 

jol p'@ d i '  s,' p'$%dz" 
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FIGURE 2. (a )  Shape of normalized eigenfunction &2). ( b )  Shape of horizontal velocity profile. 

where p' is the specific gravity of the ambient stratification. (The values presented 
in table 1 are computed withp' = 1 ,  since we are within the Boussinesqapproximation.) 
The knowledge of these parameters enables us to  compute values of the characteristic 
length A and wave speed c as follows: 

c = co('+$r;),  

where 31 is the amplitude of the solitary wave given by 

x-ct 
y = 7 sech2- 

A (7)  

The interfacial displacement 7 for the continuous pycnocline model can be shown to 
obey thc following KdV equation : 

where s' = -s/Eo. It is of interest to  note that when a-'+O, i.e. when the pycnocline 
thickness tends to zero, the classical results for a discrete two-layer model are 
obtained. These results have always been obtained in the past from potential theory 
(see e.g. Segur & Hammack 1982). Thus, as a-'+O, 
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within the Boussinesq approximation, leading to the well-known formulae 
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If the Boussinesq approximation is not invoked, then the limits, as u-l + O ,  are 

so that 

For a continuous stratification of the pycnocline type i t  is also of interest to  relate 
the maximum displacement of an isopycnic to the disturbance velocity in the upper 
layer (here in the case where h, < h,, only solitary waves of depression are possible, 
i.e. ?j is negative). After some manipulation, we find the relation 

where u,,, is the maximum horizontal perturbation velocity at any level in the upper 
layer away from the pycnocline. It follows from (13) that  urnax is larger or smaller 
than co, according to whether 171 is greater or less than h,. Furthermore, from (6) 
it is seen that I u,,, I < c if and only if 

Since the waves are obtained as the solution along the channel of an initial step-like 
rectangular function with dimensional step-depth qo and step length L,  we know 
from the now well-known inverse-scattering theory (see e.g.Ablowitz & Segur 1981 ; 
Whitham 1974) that the number N of solitons that will evolve is given by (see Messiah 
1971) 

S 
N < - + 1 ,  (15) x 

where, in the present context, 

It should be noted that in the two-layer limit, within the Boussinesq approximation, 
S becomes 

3. Experimental set-up and procedure 
Experiments were conducted in a long wave tank made of Plexiglas, measuring 

0.6096 m (24 in.) deep, 0.3556 m (14 in.) wide and 9.144 m (30 ft) long. A watertight 
movable gate of the same width as the tank, functioning as the wave generator, was 
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FIQURE 3. Experimental set-up, showing movable gate at right-hand end of tank. 

installed near the upstream end of the tank (see figure 3). A configuration with shallow 
light water on top of a deeper layer of heavier (saltier) water was used. The depth 
of the light water behind the gate could be adjusted to exceed that in the main portion 
of the tank by any desired amount while keeping the free-surface level the same 
throughout the whole tank. The length of the trapped fluid could be varied by 
changing the location of the gate. In  this way, a rectangular pool of light water of 
any desired depth and length could be trapped behind the gate. The gate could be 
lifted, at  the initiation of an experiment, to allow this step-like rectangular light-water 
pool to propagate downstream. A schematic view of the experimental set-up is shown 
in figure 3. In Part 2 of this study a submerged shelf and slope were installed in the 
tank for the study of deformation, breaking and fission of the internal solitary wave. 
Four different measurement techniques were employed in the experiments. 

(i) Direct $ow visualization, by photographing the dyed-layer evolution. 
(ii) Hot-$lm anemometry, using two hot-film anemometers (Thermosystem Models 

lOlOA and 1050). The two hot-film probes were inserted at two different locations 
at  the undisturbed pycnocline level (see figure 3). The outputs from the probes were 
recorded continuously on two separate strip-chart recorders running at a preselected 
speed. The probes measured the particle velocity of the fluid at these locations. 
Accurate calculation of the wave-propagation speed was made possible by measuring 
the arrival times of the peaks of the disturbance. The temporal velocity structure 
at the level of the probes and (for Part 2) the flow behaviour during the deformation, 
breaking and fission were measured quantitatively. 

(iii) Interface follower. An interface follower that followed an isopycnic with great 
accuracy was used to measure the displacement waveform. The instrument consisted 
of a conductivity probe, which was slaved to move, through a servomechanism, with 
a predetermined conductivity layer corresponding to an isopycnic in the pycnocline. 
The instrument was developed by the Institut de MBcanique de Grenoble (the authors 
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wish to express their thanks to  the Institute for the loan of the instrument) and has 
been described by Helal & Molines (1981). The isopycnic could be followed with a 
precision of 0.1 mm in height, and the response time was less than i s .  In the 
experiments the predetermined conductivity was chosen to  be an isopycnic a t  
approximately one-half of the pycnocline depth below the mid-depth of the pycnocline. 
The output from the interface follower was linear with the displacement, and was 
recorded continuously on the strip-chart recorder. 

(iv) Nydrogen-bubble technique. I n  order to study the vertical shear structure during 
the passage of the wave in Part 2, the hydrogen-bubble technique was adopted to 
measure quantitatively the instantaneous velocity profile. The technique, utilizing 
the electrolysis of water to introduce hydrogen bubbles into the flow field, has been 
described extensively in the literature (see e.g. Davis & Fox 1967 ; Schraub et al. 1965). 
The bubble generator for the present study was made by stretching a fine platinum 
wire (0.03 cm in diameter) in a zigzag fashion between 2 vertical posts 5.08 cm apart 
in the cross-stream direction and extending through the depth of the flow. An 
electrical pulse was fed to the wire, and the hydrogen bubbles that were formed were 
swept off the wire by the flowing water. A slit-light box, equipped with high-intensity 
light source, with a slit size 3.7 cm wide and 76.2 cm long, was mounted on the top 
of the wave tank. The sheet of light defined a vertical plane in which the hydrogen 
bubbles were highly illuminated. The camera was located approximately 0.6 m away 
from the illuminated plane so that the bubbles could be highlighted. Synchronously 
with the excitation of the bubbles, the camera, equipped with a high-precision power 
winder, was triggered to  shoot sequentially with an exact time interval of ?j s. From 
the displacement of the hydrogen-bubble sheet in that time interval, the velocity 
profile throughout the depth of the flow was obtained. 

I n  all experiments the tank was first filled with a layer of brine solution of density 
pz, and a shallower and lighter layer of water of density p1 was slowly filled on the 
top through a floating sponge dispenser. The density difference p2-p1 between these 
two fluids was fixed to  be 0.01 g/cm3. The total depth varied between 0.34 and 
0.35 m. After filling, the fluid was allowed to stand for a t  least 2 h. The temperature 
of the fluid was found to  be uniform and equal to  the room temperature. The resultant 
density profile was measured by a conductivity probe or the interface follower and 
could be fitted by the hyperbolic tangent profile 

p ( z )  = po(l -w tanhaz), 

with a-l ,  the representative half-pycnocline thickness, in the range 0.30-1.3 cm. A 
typical density profile is shown in figure 1 .  In  the experiments a wide range of 
variation of the depths of the midpycnocline level was used. Indeed the midpycnocline 
level ranged from 0.95 to  7.6 cm below the free surface, so that the ratio h l / D  of the 
nominal upper-layer depth to the total fluid depth varied from 1 : 4.5 to 1 : 36. 

4. Experimental results and discussion 
4.1. Wave generation 

Experiments were run by releasing various sizes of the step-like rectangular trapped 
light-water pool, with step length L and step depth qo. Hot-film probes, placed beyond 
the sorting distance,? were used to  record the number of waves that evolved from 

t The sorting distance is the distance required for a set of ordered solitons to evolve from the 
initial disturbance. Hammack & Segur (1974) gave a simple prescription for its determination. 
Briefly, the sorting distance is given by coh / (c -ce , ) .  
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the initial disturbance. The processes that followed after the release included initial 
breaking, and the formation and propagation of the solitons. These processes were 
photographed. 

Immediately following the opening of the gate, the trapped light-fluid pool began 
to move forward into the main portion of the channel, accompanied by some local 
vortices induced by the removal of the gate. Depending on the magnitude of the 
original step depth and length, the formation of the solitons was accompanied by 
different degrees of initial breaking, which restricted the maximum amplitude of the 
lead soliton. 

The intensity and duration of the initial breaking appeared to increase with 
increase in qo/L. The initial breaking, when it occurred, was due to the large shear 
at the interface. The initial breaking process, accompanying the lead soliton, ceased 
after the leading wave had travelled a distance of up to 2 m for the strongest case 
tested. For verifying the theoretical number of solitons, qo/L was chosen to avoid 
such strong initial breaking, since this type of energy dissipation was not incorporated 
into the KdV theory. 

The initial breaking is shown in figure 4 for three successive runs with increasing 
pycnocline thicknesses. It is seen that breaking was the strongest in the first run (top 
picture) after the layers were prepared and when the pycnocline was the thinnest. 
In the subsequent runs, under otherwise similar conditions, the breaking became 
weaker as the pycnocline was thickened by the previous experiment. The density 
profiles corresponding to the first and third runs are shown in figure 5, where the 
thickening of the pycnocline between these runs can be seen. The value of a-l 
increased from 0.30 cm (0.12 in.) to 0.46 cm (0.18 in.) (the ratio hJD for the above 
runs was 1 :36). This result suggests that breaking was due to the shear at the 
pycnocline. Stronger pycnoclinal shear due to a thinner pycnocline leads to more 
intense breaking for the same amplitude wave. A more systematic and detailed study 
of the r61e of shear on wave breaking is reported in Part 2 in conjunction with the 
breaking of shoaling waves. 

The number of solitons that will evolve from the initial disturbances used in this 
study is given by (15) and (16) according to inverse-scattering theory and the present 
KdV model. We test the formula by conducting a set of experiments with h,/D = 
and a total depth of 0.356 m (14 in.), but with a range of values of I qo 1; L. In  these 
experiments aD averaged about 28. A typical train of solitons as recorded by the 
strip-chart recorder is shown in figure 6. The upper trace is from an anemometer whose 
signal was not linearized, so that lower velocities were accentuated. The lower trace 
is from a linearized anemometer. A set of four ordered solitons is clearly discernible. 
Figure 7 (a) shows a photograph of the three leading solitons of a train of 8 solitons 
(theoretically). In  this case the channel was too short for the solitons to sort 
themselves out totally before the lead soliton was reflected back from the downstream 
end of the tank. The result of this series of experiments is summarized in figure 8, 
where the number of solitons is plotted against the value of I qo 1: L. The solid line is 
the theoretical lower bound and the dotted line is the theoretical upper bound using 
aD = 28. The broken line is the lower bound using the two-layered model of (17).  
It is seen that the two-layered model overestimates the number of solitons, leading 
to considerable discrepancies with the experimental findings. Figure 7 ( b )  shows a 
single solitary wave. In most of the later experiments the initial condition was chosen 
so that only one, or at most two, solitary waves were produced. 

2 F L Y  159 
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FIGURE 4. Initial breaking for three successive runs, showing effect of thickening pycnocline. 
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FIQURE 6. Typical train of solitons recorded by hot-film probes at two locations. Top trace is from 
a probe without linearizer, bottom trace is a linearized signal. The two probes are at a tlistance 
of 107 cm apart. 
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FIGURE 7.  (a) Photo showing 3 leadin~)solitons in a train. (b)  A single soliton. 

4.2, Experimental evaluation of the validity and range of the Kd V theory 

Various nominal layer-depth configurations were chosen for the experiments to 
explore the range of validity of the KdV theory. Four groups of experiments were 
run for this purpose, with the total fluid depth kept cssentially unchanged. The 
nominal depths of the four groups are shown in table 2. It is seen that the ratio of 
h, : D ranges from 1 : 4.5 to 1 : 36. 
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Group h, (cm) 
1 7.6 
2 5.1 
3 2.5 

1.6 
4 1.5 

1.3 
0.95 

Koop & Butler (1981) 
1 1.366 

h, (cm) 
27.9 
30.5 
33.0 
33.0 
33.0 
33.0 
33.0 

6.948 

D = h, + h, (cm) 

35.6 
35.6 
35.6 
34.6 
34.5 
34.3 
34.0 

8.314 

Dlh, 
4.5 
7 

14 
22 
23 
26 
36 

6 

2 1.366 47.87 49.236 36 

TABLE 2. Nominal depths and K-values in experiments 

K 

0.272 
0.184 
0.105 
0.067 
0.063 
0.056 
0.040 

0.240 
0.195 

Boussinesq 
0.040 
0.032 

Boussinesq 

The output from the hot-film probe was recorded on the strip chart as a function 
of time. Initially only the hot-film probes were used. Subsequently, when the use of 
the interface follower became available its output was recorded similarly. Typical 
records from the hot-film probe and from the interface follower are shown in figures 
9(a )  and ( b )  respectively from two experiments in group 4. The wavelength of the 
disturbance was then calculated according to the definition 

1 

urn,, 
A = - s,” u(x-ct)d(x-ct), 

1 f c c  

or 



32 T. W. Kao, F.-S. Pan and D. Renouard 

(b) 

FIQURE 9. (a) Typical record of linearized hot-film probe output, 
( b )  Typical record of linearized interface-follower output. 

by using only the forward portion of the wave in a method similar to that used by 
Koop & Butler (1981), since the back portion of the wave is sometimes contaminated 
by the small-amplitude disturbances in the tail. The above definition is equivalent 
to taking the area of the shaded portion in figure 9 and dividing by the maximum 
value u,,, or 7. 

The wave speed or celerity of the wave was determined from the record of two 
probes, which were placed at  a known distance apart, by measuring the time lag of 
the wave peak between the two probes. In  all the experiments the time was 
determined to t s. The experimental value of co, the linear long-wave velocity, was 
determined by measuring the wave speed of the soliton as its amplitude decreased 
during its travel over long distances and then linearly extrapolating to zero 
amplitude. 

Three tests are used to test the range and validity of the KdV theory: 
(i) the wave-length ws. amplitude relationship ; 
(ii) the incremental wave speed ws. amplitude relationship ; 
(iii) the sech2 waveform profile. 
Before proceeding to make these tests, we first examine the range of validity of 

the linear relationship between the maximum horizontal particle velocity u,,, and 
the wave amplitude 7, by plotting u,,,/co against ?j/hl.  The result of this comparison 
is shown in figure 10. It is seen that umax/c0 = ?j/h,  for 7 / h 1  < 1, for all values of 
hl /D tested. A progressive deviation was noted as T/h,  increased beyond 1. In the 
subsequent discussion the data oil urnax were converted to wave amplitude, and no 
further distinction was made between hot-film-generated and interface-follower- 
generated amplitude data, except where it is specifically noted. 

We now proceed to plot the wavelength 0s. the amplitude for test (i), or, more 
precisely, to test the theoretical relationship given by ( 5 ) .  Equation ( 5 )  can be written 
as 

where 
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FIQURE 10. Intercomparison between hot-film reading and 
interface-follower reading: a, hJD = &; A, f t ;  0,  +. 

Obviously, the best way to plot the data is to take the measured values of h and 7 
(or urnax) and plot h/DK against Tj/D on a log-log plot. The theoretical KdV result 
is then represented by a single straight line with a negative slope of !j according to 
(19). The values of K in each group of experiments were obtained from the calculated 
values of r and s/&, with a D  = 28, and are listed in table 2. Also included in table 2 
are the parameters for the two groups of experiments performed by Koop & Butler 
(1981). These experiments constitute the only other published experiments on the 
internal solitary wave with data that can be tested against the theory in this manner. 
The value of K for Koop & Butler's experiments are obtained from the two-layered 
model. The first value listed in each group is the exact value using (11). The second 
value (marked Boussinesq) is obtained from the conventional model using (9). 

The result of plotting A/DK against T / D  from the present data is shown in figure 
11.  It is seen that the data from all 4 groups agree well with the KdV theory (shown 
in the figure as a solid line) to a remarkable degree of accuracy at small values of 
q / D .  We observe a systematic deviation from the theory at larger amplitudes. It is 
important to note that the deviation is independent of the depth ratio hJD. Thus 
the experimental results follow the KdV theory for the whole range of h,/D tested; 
from 1 ~ 4 . 5  to 1 : 36. We also note that the data from hJD = & to & extend over one 
decade in the normalized amplitude Tj/D and shows exceptionally good agreement 
with the theory. These data, together with the data on wave speed and waveform 
to be presented subsequently in this paper, provide strong evidence that the KdV 
theory is valid for internal solitary waves in water of finite total depth. 

The results of Koop & Butler (1981) are also indicated in figure 11 by dotted boxes. 
Both sets of results follow the inverse-square-root relationship of the KdV scaling 
law, but the case with hJD = &was in considerable disagreement with the theoretical 

- 
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FIQURE 1 1 .  Dimensionless wavelength h / D K  versus wave amplitude q / D :  0, & < h , / D  < A ;  

h,lD = ifi; m, 4; A, &; - , ist-order KdV theory. 

prediction. Indeed, as pointed out by Koop & Butler, the KdV theory overpredicts 
the experimental wavelengths by a factor of at least 2, perhaps because of the neglect 
of the real-fluid effects in the two-layer theory. 

An additional comment that is relevant here is the use of T / D  as the normalized 
amplitude parameter instead of i j /h,  as used by Koop & Butler and others. i j /D 
is the parameter dictated by the KdV theory, and we have seen that i t  correlated with 
the data very well. We found that if the data for h/DK were plotted against i j /h,  
the correlation in terms of the systematic deviation due to  large amplitude would 
be considerably poorer. 

A second, equally definitive, test of the theory is to  examine the wave-speed (or 
velocity) 0s. amplitude relationship given by (6), or 

where 6c is the increment in wave speed. Since 6c is sensitive to the value of co, the 
measured value of co must be used. We measured the wave speeds of the soliton as 
its amplitude decreased during its travel over several lengths of the tanks. The 
recorded value of c was then plotted against 7 or u,,,. In  each case the relationship 
between c and i j  or u,,, was found to  be fairly precisely linear, especially when the 
amplitude became small. The straight line was extrapolated backwards to find the 
value of c at ?j = 0 or u,,, = 0. The c thus determined was used as co and was found 
always to be lower than the calculated values by approximately 15 yo on the average. 
The data for 6c/co against ?j/D are shown in figure 12. The solid straight line is the 
theoretical result from (21). It is seen that the agreement is remarkably good, 
especially for lower values of 7 / D ,  for all values of hJD.  At larger amplitudes a 
systematic deviation from the linear relationship was again found. The results 
indicate that the increment in wave speed approaches an asymptotic limit of 
6c = O.lrco for i j /D approaching 0.2. 

A final and third test of the theory is to  plot the waveform and check against the 
sech2 distribution. For comparison the Lorentzian distribution will also be exhibited. 
We do this by demanding that the data fit both theoretical curves at two points. These 
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FIGURE 12. Dimensionless incremental wave speed Sclc, T versus wave amplitude 
v / D :  0 ,  h , / D  = A ;  ., $; A, A ;  -, 1st-order KdV theory. - 
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FIQURE 13. Normalized wave-amplitude us. time (waveform): -, sech2 of KdV theory; ----, 
Lorentzian; a, h J D  = A; 0, &; A, h; A, ., 0, h J D  = f ;  but with different amplitudes; @, 
0, h , / D  = &, but with different amplitudes. 

ct /A 

two points are the point at  the wave peak, and a point where the wave amplitude 
has dropped to 30.5% of the peak value. (This latter point was chosen since 
sech2 1.2 = 0.305). The normalized plot of the wave profile based on the normalized 
isopycnic displacement amplitude q/?j from the interface-follower data is shown in 
figure 13. The agreement with the sech2 profile is truly excellent, particularly so for 
smaller values ofh,/l). The plot of the wave profile based on the velocity measurements 
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FIQURE 14. Normalized upper-layer horizontal velocity u/u,,, versus time (waveform) : -, sech2 
of KdV theory; -----, Lorentzian; A, h, /D  = &; 0 ,  A; 0, &; 0 ,  A. 

of the hot-film anemometer is shown in figure 14 for small values of hJD.  In this 
case, only the forward portion of the wave was plotted. The agreement is again seen 
to be superb. 

From these exhaustive comparisons, we have confirmed that what are observed 
are truly the KdV solitary waves. Indeed the data represent a definitive confirmation 
of the KdV theory for internal solitary waves in a fluid of finite total depth, for a 
large range of values of the ratio of upper-layer thickness to total depth. We should 
also emphasize the inadequacy of the discrete two-layer model for the quantitative 
evaluation of data from a stratified fluid with a continuous pycnocline. 

PART 2. WAVE SHOALING, INSTABILITY A N D  
BREAKING O N  A SLOPE 

5. Shear instability 
In Part 2 we investigate the evolution and breaking of the solitary wave as it shoals 

on a sloping bottom connecting the deeper region where the waves were generated 
to a shallower shelf region. For this purpose a slope and a shelf were installed in the 
wave tank used in Part 1. For comparison, the damping of the solitary wave when 
the slope and shelf were not present will also be included. 

The water configuration in the present study continues fa have a shallower upper 
layer, which is typical of ocean stratification. Since the solitary wave is a wave of 
depression, its geometrical relationship to the bottom slope is opposite to that of a 
free-surface wave. The breaking of solitary waves on the free surface has been known 
to occur when the particle velocity at the free surface a t  the crest exceeds the celerity 
of the crest. This condition is realized when the wave height reaches 70 yo of the fluid 
depth, or ?j /h=0.7  (McCowan 1894). In a shoaling surface solitary wave this 
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Slope 

FIGURE 15. A schematic view of the shoaling experiment. 

condition results in a spilling breaker similar to the breaking of progressive sinusoidal 
water waves. 

The breaking of internal waves is rather different. The existence of a shear layer 
suggests the possibility of shear instability of the Kelvin-Helmholtz type (see e.g. 
Phillips 1966, p, 186). In the case of a shoaling internal solitary wave of the depression 
type not only is the existence of a strong shear layer important, but the geometrical 
configuration of the bottom relative to the wave now forces the intensification of the 
reverse flow in the lower layer to satisfy mass conservation during the passage of the 
wave up the sloping bottom. The shear across the pycnocline is therefore greatly 
intensified. 

The possibility of shear instability in the pycnocline is therefore strongly suggested 
by the dynamically prominent vortex sheet at  the interface. Miles (1961, 1963) and 
Howard (1961) have studied the stability of a stratified shear flow and have shown 
that a condition sufficient for the stability is that the local Richardson number 
J ( z )  > i everywhere. The local Richardson number J(z )  is defined as 

where g is the acceleration due to gravity acting in the negative z-direction, j j  is the 
ambient stratification, po is a reference density and u is the horizontal velocity. 
Though the flow is not necessarily unstable when J ( z )  < a, many examples of simple 
shear flows (see e.g. Miles 1963) do become unstable to some disturbances whenever 
J ( z )  < &. The criterion J ( z )  < is investigated in this study for the probable onset of 
instability pertaining to the shoaling of internal waves. 

The fluid movement in the internal solitary wave is of course a case of unsteady 
shear flow. Relative to a fixed point in space, particle velocity is changing continuously 
with time. This type of unsteady shear motion induced by the propagation of the 
internal solitary wave has not yet been studied in detail theoretically. Nevertheless, 
it  may be reasonable to assume that the stability criteria developed for steady basic 
flows would be relevant to the present study as long as the growth rate of an unstable 
disturbance is large compared with the rate at which the basic flow changes. 

6. Experiments on shoaling solitons 
The experimental procedures and techniques are the same as in Part 1. Several 

different slopes were employed in the shoaling experiments ; but principally we 
present data for one with a 1 :9 inclination and one with a 1 : 16 inclination. The 
projected horizontal lengths of the slope were 2.3 m and 4.06 m respectively. The 
nominal depth of the lower layer was 7.6 cm on the shelf and 33 cm in the deep-water 
side of the slope. In most of the shoaling experiments the nominal upper-layer depth 
was 2.54 cm, i.e. hJD in deep water was &. A schematic view of the shoaling 
experiment is shown in figure 15. The solitary wave was generated in the same manner 
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FIGURE 16(a) .  For description see page 41 
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FIGURE 16(a) continued. For description see page 41. 
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(b) 

FIGURE 16(b). For description see facing page. 
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FIGURE 16. Sequences of photographs showing various stages of evolution and breaking of a 
shoaling internal solitary wave: (a) for a 1 :9 slope and vo = 11.4 om; ( b )  1 :7.5 slope and 
vo = 15.2 cm; (c) 1 : 16 slope and to = 12.7 cm. 
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as that described in Part 1 by. releasing a pool of trapped light water behind a sliding 
gate. As in Part 1,  four different measurement techniques were employed in the 
experiments. 

The solitary wave was generated in the deep-water part of the tank and allowed 
to propagate in deep water for a t  least 2 m before reaching the toe of the slope, so 
that the soliton was fully developed. (Note that the sorting distance was estimated 
to be less than 1 m for experiments in which h, /D = &.) Care was taken to ensure 
that only one distinct soliton was present in the shoaling process. A second soliton, 
when and if generated, was generally so weak that i t  was sufficiently damped and 
well separated from the lead soliton to be insignificant. Different initial depths yo of 
the trapped light water were used to generate solitons of different amplitude. In order 
to provide a reference, the damping characteristics of these waves were measured first 
when the slope and shelf were not in place. It was found that the percentage of 
attenuation in water of constant total depth was 4;3 yo m-l from 3 m to 6 m from 
the gate, and gradually increased to 6.2 % m-l at  larger distances for h, /D  = &. (This 
percentage was found to decrease with increasing h,/D.)  The attenuation was also 
found to be less than the theoretical prediction of Leone, Segur & Hammack (1982) 
based on Keulegan’s (1948) formulation of viscous decay of long linear surface waves. 
However, a t  a later stage of the decay processes when the wave had travelled over 
16 m, the decay did follow the linear prediction rather precisely. This fact is 
attributable to the nonlinear characteristic of the wave, especially at the early stage 
of propagation along the wave tank. 

We are now in a position to investigate the possible criterion for breaking for the 
shoaling internal solitary wave. Through visual observation of the dyed interface, we 
were able to make qualitative observations of the wave during the shoaling process 
on the slope for different values of yo. (It should be noted that r] ,  is the depth of the 
initial pool, and is not the amplitude of the wave. The amplitude of the wave is in 
general much less than yo.) For r ] ,  < 8 cm no breaking or instability was observed. 
On the other hand, for yo >, 11 cm instability and breaking were present for the 1 :9  
slope as well as the 1 : 16 slope. 

The processes of breaking on a 1 : 9 slope and on a 1 : 16 slope are similar, but the 
appearance and extent are quite different. Breaking on a 1 :9 slope excited more 
vigorous turbulence in a shorter duration than on a 1 : 16 slope. In general, before 
breaking, the wave was distorted so that the front of the wave became milder and 
roughly parallel to the inclined bottom. Also, the back of the wave became several 
times steeper than the front. When the distorted wave climbed further up, the shear 
at the interface increased accordingly in order to guarantee the conservation of mass. 
This increasing shear finally reached a limit that triggered interfacial instability in 
order to consume excess energy. The induced local turbulence due to breaking was 
located along the back of the wave, and sustained its intensity through the completion 
of the breaking event. 

Figures 16 (a)-(c) display three sequences of pictures in three experiments to 
demonstrate qualitatively the shear instability and breaking of the wave on different 
slopes. Figure 16(a) is a set of nine pictures taken for the wave of 7, = 11.4 cm. The 
slope was 1 : 9. Pictures 1-8 were taken at  approximate time intervals of 1-2 s, while 
picture 9 at the bottom was taken about 7 s after picture 8. The pictures show a 
steepening of the back of the wave and the associated shear instability, breaking and 
local turbulence. During the shoaling process the wave, which is of moderate 
amplitude and typical of most of our experiments, maintained its symmetric form 
to well beyond the midpoint of the slope. It then gradually felt the bottom with a 
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gradual steepening of the back of the wave. This is in distinct contrast with the 
shoaling process of the free-surface wave, when the waveform steepens in the front. 
This is, however, not surprising in view of the geometrical relationship between the 
wave of depression and the slope bottom. Concomitant with the steepening at the 
back, the density interface in the forward and main portion of the wave became nearly 
parallel to the bottom slope. This is seen in the top two pictures of figure 16(a). A t  
this stage, interfacial shear disturbances began to appear, propagating towards the 
back of the main wave. These interfacial disturbances became stronger, as shown in 
the fourth and fifth pictures in figure 16 (a). These disturbances subsequently burst 
into turbulence as the wave climbed over the top and seemingly squashed into the 
shallow shelf water. In the sixth and seventh pictures large-scale breaking in the lee 
was present. The intensity of the turbulence was seen to decay slowly for some period 
of time after the breaking, with the turbulent patch remaining near the location of 
the strongest breaking. No reflected wave was visible. 

Figure 16 (b) is for a case with 7, = 15.2 cm on a slightly steeper slope of 1 : 7.5. (Note 
that increasing time in these pictures is indicated in the counterclockwise direction, 
and the inner (smaller) scale reads the seconds.) The top picture shows the stable 
large-amplitude wave. The second picture shows the wave undergoing strong shear 
instability 7 s later, with the shear billows growing to the back of the wave. The third 
picture shows that the forward portion of the solitary wave has adjusted to be nearly 
parallel with the bottom, and the back of the wave has steepened considerably with 
large-scale breaking and possible overturning in the lee of the wave. Picture 4 shows 
that, for this atypically large-amplitude wave, the turbulent patch of the broken wave 
touched the bottom. Picture 5 shows that a reflected wave was being formed. 

Figure 16 (c) shows a sequence of six pictures for a case with r ] ,  = 12.7 cm on a much 
gentler slope of 1 : 16. (These pictures were reproduced from coloured slides, and some 
details were obscured in the reproduction.) The breaking process occurred earlier 
when the wave reached the midslope region. Mild breaking of nearly constant 
intensity in the back of the wave was evident throughout the whole sequence. In 
comparison with the breaking on steeper slopes, which was rapid and vigorous, the 
process on the mild slope was more diffuse and took place over a much longer duration 
and distance, even though the phenomenon leading to breaking was much the same. 

The particle velocity u in the upper layer was monitored by a hot-film probe. 
Figure 17 depicts the linearized output at two locations at x,* = 66 (two-fifths of the 
way up the slope) and x,* = 143 (near the top of the slope), where x,* = z , /h,  is the 
normalized horizontal distance measured from the toe of the slope. (The outputs were 
from two successive runs using the same probe.) These signals were for a larger- 
amplitude wave generated with 7, = 15 cm on a 1 : 16 slope. (The total dimensionless 
length of this slope is 160.) A sign of a strong current is detected, with the first 
indication of a high-frequency turbulent patch immediately behind the crest (at a 
level of 2.5 cm below the surface). Visually, no clear pattern of breaking was 
observable for this wave at x,* = 66. The tendency towards instability gradually grew 
with the progression of the wave. Since the process of breaking is gradual and gentle, 
no specific location of breaking can be pinpointed. The maximum-velocity u,,, signal 
at x,* = 143 involves a flat but rugged top indicating profuse turbulence. It shows that 
maximum particle velocity prevailed for a large portion of the breaking wave. Other 
aspects of the transformation of waves propagating on slopes of 1 : 9 and 1 : 16 will 
be discussed following the study of interfacial instability. 

The foregoing investigations revealed that waves generated by releasing a step-pool 
of lighter fluid of various 7, had shown consistent situations of instability on each 
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FIGURE 17. Linearized hot-film probe output at two locations on the slope, 
showing upper-layer particle velocity during breaking. 

of the slopes, suggesting rather strongly the role of shear instability in the onset of 
the breaking process. It would therefore be of interest to investigate first the 
associated local Richardson number and compare it with Miles’ criterion discussed 
in $5.  Miles’ criterion was developed for steady shear flow, but would most likely be 
applicable in unsteady situations if the growth rate of the unstable disturbance is 
large compared with the rate at which the basic flow changes. 

It is known that, in a steady stratified fluid in shearing motion, the rate of growth 
of an unstable disturbance is proportional to the maximum shear rate (see e.g. Miles 
1963). For a typical shoaling wave the maximum shear rate is 

while the associated rate of change of the basic flow is n, where 

wave speed c 
wavelength = h’ n =  

Therefore (g),,). - ..(; = ah %. 1. 
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FIQURE 18. Photographs of illuminated hydrogen-bubble tracers during 
the passage of a solitary wave at successive times + s apart. 

45 
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FIQURE 19. Construction of a shear profile during the passage of a solitary wave. 

Generally, aA is at least O(102). Thus for all solitary waves on the pycnocline 
(au/az),,, Bn,  i.e. Helmholtz instability occurs in a relatively short period of time 
compared with the rate of change of the basic flow. It is thus relevant to explore the 
breaking criterion for the solitary wave in terms of Miles’ criterion for steady shear 
flow. 

After several unsuccessful attempts using dye-injection techniques, the hydrogen- 
bubble technique was adopted. The method proved to be highly suitable for our 
purposes. During the experiment the hydrogen-bubble wiring system was inserted 
at the premarked location where the velocity profile would be investigated. An 
electric pulse was switched on to generate continuous streams of bubbles when the 
wave peak was still ahead of the premarked section by a few centimetres. Figure 18 
shows three typical views of the illuminated hydrogen-bubble mist sheets. The first 
picture was taken immediately after the bubbles were generated (t = 0) ; the second 
and the third pictures were taken a t  successive instants of t = 0.5 s and t = 1.0 s 
respectively. The ‘step’ effect in the pictures, resulting from the zigzag wiring that 
went around the supporting rods, was very useful for tracing the paths of particles 
a t  each selected level. When the views of the bubbles were enlarged one a t  a time 
and superimposed on a large sheet of white paper by a slide projector, the velocity 
profile was constructed (see figure 19). It can be seen that particles in the mid-depth 
of the pynocline were stagnant. By using the velocity profile, conservation of mass 
flow was routinely checked and confirmed across the plane perpendicular to the fluid 
flow. As mentioned before, during the shoaling of the wave the reverse flow in the 
lower layer accelerated in order to conserve mass. This caused the shear to increase 
progressively as the wave travelled up the slope. It should be noted that, owing to 
the parallax effect, the background scale in figure 18 is smaller than the actual scale 
on the illuminated plane of the hydrogen bubbles. The actual scale was used to 
determine the values of Az and AU. 

I n  figure 2 a profile of horizontal velocity with aD = 28 was plotted. From it we 
saw schematically that the thickness of the shear layer corresponds to 2u-’, the 
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TABLE 3. (a )  Experimentally determined values of .I(%): (a )  on a 1 : 16 slope and ( b )  a 1 :9 slope 

- 0.37 0.45 0.45 
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x,* = 0 
( b )  

1:: h 

h,lD 

thickness of the pycnocline. This finding suggests that the local Richardson number 
can be expressed as 

where g’ is the reduced gravitational acceleration, Az is the thickness of the shear layer 
and AU is the relative difference in the horizontal velocity of the corresponding shear 
flow (see figure 19). That Az = 2a-’ was substantially confirmed in the present 
experiments. With Az and AU determined experimentally, various values of J(z )  were 
calculated for waves propagating on both the 1 : 9 and 1 : 16 slopes. The results of the 
calculations of J ( z )  are tabulated in table 3 (a)  for waves on a 1 : 16 slope, and in 
table 3 ( b )  for waves on a 1 :9 slope. Most values of J ( z )  were sought for waves on a 
1 : 16 slope, for which the breaking process was more gentle. 

As we have observed in the present experiments, a wave generated with qo = 10 cm 
represented a marginal situation for interfacial stability on both 1 : 9 and 1 : 16 slopes. 
The amplitude of the wave a t  the toe of the slope was approximately 5 cm. The 
experimentally determined minimum values of J ( z )  obtained from three independent 
experiments with qo = 10 cm were 0.25, 0.26 (on 1 : 16 slope) and 0.29 (on 1 :9  slope), 
depending on the thickness of the pycnocline (later runs had thicker pycnoclines). 
A wave generated from qo = 7.6 cm (no breaking on both slopes) and waves generated 
from qo = 12.7 cm and 15.2 cm (breaking on both slopes) were also investigated. The 
minimum local Richardson numbers found for a wave generated from qo = 7.6 cm 
were 0.37 (on slope 1 : 16) and 0.41 (on slope 1 :9). Waves generated from qo = 12.7 cm 
and qo = 15.2 cm both underwent gentle breaking on 1 : 16 slope during the shoaling 
process, and both had minimum local Richardson numbers smaller than the critical 
value of 0.25 (see table 3). 

An overall review of the data in tables 3(a ,b )  suggests that the results are 
consistent, and that the local Richardson number indeed dominates the phenomenon 
of interfacial instability with a precise trend. Breaking was present at x,* = 145 on 
the 1 :  16 slope from a wave generated with qo = 12.7 cm or 15.2 cm, and the local 
Richardson number was indeed below a. It is thus concluded that Miles’ criterion of 
the stability for the stratified shear flow (i.e. J ( z )  > a) is applicable to the present work, 
and J ( z )  < 4 serves as a sufficient condition for the cause of interfacial instability for 
shoaling internal solitary waves. 

It is also of interest to derive a simple predictive formula for internal solitary-wave 
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x,* 
145 

70 

27 

85 

0 

( i )  
D-x,  tan6 

v,, (cm) h,-x, tan6 

1.254 
12.7 

1.116 
12.7 

1.088 
12.7 

(4 
(iii) 

(AU)2 = [(i) x (ii)]* 

65.8 
100.6 
129.0 
52.2 
79.4 

102.6 
49.7 
75.5 
97.4 

(iv) 
Calculated 

J 

0.38 
0.25 
0.19 
0.48 
0.31 
0.24 
0.50 
0.33 
0.26 

(v) 
Experimental 

J 

0.37 
0.25 
0.23 
0.45 
0.32 

0.45 

0.31 

- 

- 

( b )  
68.8 0.36 0.41 

10.2 7 .6)  1.281 {:::: 104.5 0.24 0.29 
48.6 0.51 0.47 

10.2 7'6)  1.077 {::;: 73.7 0.34 0.37 

TABLE 4. (a) Comparison between theoretical and experimental J :  
(a) on a 1 : 16 slope and ( 6 )  a 1 :9 slope 

breaking on a shoaling slope, based on (23), the lowest-order solitary-wave solution 
and Miles' criterion. Indeed, assuming that, for a slowly varying bottom, the 
pycnocline thickness 201-1 remains unchanged and the ratio ofthe upper- to lower-layer 
fluid velocity remains equal to the ratio of the nominal depths of the lower and upper 
layers during shoaling, the lowest-order solitary-wave solution gives 

D-x, tan0 
h, - xs tan 0 

AU = 

where urnex is the maximum horizontal velocity in the upper layer when the wave 
is in deep water, x, is the horizontal distance measured from the toe of the slope, D 
is the total water depth in deep water, h, is the depth of the lower layer in deep water 
and 6 is the angle of inclination of the slope to the horizontal. But, to lowest order, 

where 7 is the wave amplitude in deep water, h, is the depth of the upper layer and 
co is the linear interfacial long-wave wave speed. Since Az = 2a-', (23) now becomes, 
on using (24) and (25), 

J = g(5) ( h,-x,tan0 
act  7 D-x,  tan0 

Thus, given h,, h, and 7, J ( z )  can be calculated from (26) as a function of x,, and the 
location where J < a is the location of initial breaking. 

Table 4 shows the values of J computed from (26) at the x,* locations along the 
slope corresponding to the experiments. The calculated values of Ja re  listed in column 
(iv), and the values determined from the hydrogen-bubble experiments reported in 
tables 3 (a ,  b )  are shown in column (v) for both the 1 : 16 slope and the 1 : 9 slope. The 
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FIGURE 20. (a) Displacement profiles of the 'interface' as measured by an interface follower at 
x: = 10 and x: = 89 on a 1 : 9 slope during the passage of an internal soliton generated with 
lo = 10.2 om. (The beginning of the slope corresponds to x,* = 0 and the end of the slope, x,* = 90.) 
(b)  Upper-layer particle-velocity profile measured by a linearized hot-film probe at x: = 0, x,* = 43 
and x,* = 85 corresponding to figure 20(a). 

agreement is seen to be remarkably good in view of the rather simple assumptions 
made in the derivation of (26). 

The evolution of the wave profile and the evolution of the upper-layer particle 
velocity in the shoaling process were also quantitatively measured by means of the 
interface follower and the linearized hot-film anemometer at several locations along 
the slope. As in Part 1, the interface follower and the hot-film probe were inserted 
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in the vicinity of the pycnocline. For a set of different locations the experiment was 
repeated to generate the data for each location. For these measurements, experiments 
were conducted in which a step-pool of r ] ,  = 7.62 or 10.2 cm was released so that 
breaking would not occur on the slope. 

Wave transformation on the 1 : 9 slope is shown in figures 20 (a, b) for vo = 10.2 cm. 
Figure 20(a) shows the displacement profile of the interface as followed by the 
interface follower at x,* = 10 and z,* = 89. (The total normalized length of the slope 
is 90.) The dashed profile is that obtained from a separate experiment under otherwise 
identical conditions, but in water of constant total depth without the slope. It is seen 
that on this slope the deformation near the top of the slope is pronounced. The 
interface shows the characteristic steepening at the back of the wave as shown in the 
pictures in figure 16(a) for a larger-amplitude wave. A phase shift showing a delay 
in the arrival of the wave is also evident. Figure 20(b) shows the particle velocity 
in the upper layer for the same case, but from a different set of experiments. The 
particle-velocity profile in the upper layer experienced a very marked flattening and 
a collapse of the peak value concomitant with a strong increase in the lower-layer 
velocity. The velocity at  z,* = 85, which is near to the top of the slope, shows a 
decrease, by the action of shear, in the front and middle portions of the wave. The 
peak velocity is markedly reduced by approximately j. The particle velocity towards 
the back of the wave is maintained, however. It can be seen that the duration of the 
wave was increased to accommodate the forward-moving fluid from the back of the 
wave. In  this case instability was actually incipient. For larger-amplitude waves such 
as that in figure 16(a) the retardation of the peak velocity was more pronounced, 
and the forward motion of the fluid from the back of the wave could conceivably force 
the light upper fluid to be ejected downwards, inducing overturning and large-scale 
breaking in the final stage. It appears from these experiments that, for this to happen, 
the initial instability due to shear must occur first, and downward detrainment of 
light fluid is a manifestation of the growing instability. For ?lo = 7.62 cm the 
displacement profile was substantially unchanged from the constant-depth case, and 
the particle-velocity profile experienced only a slight flattening. No breaking was 
present. 

Wave transformation on the 1:16 slope is depicted in figure 21(a,b) for 
q0 = 10.2 cm. Figure 21 (a) shows the displacement profiles of the interface as followed 
by the interface follower at x,* = 0 and x,* = 148. (The total normalized length of the 
slope is 160.) The dashed profile is that obtained from a separate experiment under 
otherwise identical conditions, but in water of total constant depth without the slope. 
It is seen that, aside from a phase shift delaying the arrival of the wave, the wave 
profile is only slightly deformed, with only a slight steepening at the back of the wave. 
Figure 21 (b) shows the particle velocity in the upper layer at three locations x,* = 0, 
37 and 102 for the same case, but from a different set of experiments. A similar phase 
shift was obtained, but there was a considerable flattening of the velocity profile com- 
pared with that in constant-depth water, in addition to a steepening at the back of the 
wave. There was an adjustment of particle velocity in the upper layer due to the large 
increase in particle velocity in the lower layer, even though the interfacial-displacement 
profile was not as sensitive to the presence of the bottom slope. The particle velocity 
at x,* = 102, which is just beyond the midpoint of the length of the slope, now already 
shows a collapse of the peak velocity similar to that which occurred in the previous 
case of the steeper slope near the top of the slope. In  this case, breaking was again 
incipient, with J slightly larger than a. (Note that the amplitude of the wave in this 
run was smaller than that in the pictures shown in figure 16(c), where breaking was 
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FIGURE 21. (a) Displacement profiles of the 'interface ' as measured by an interface follower a t  z: = 0 
and x,* = 148 on a 1 : 16 slope during the passage of an internal soliton generated with qo = 10.2 cm. 
(The beginning of the slope corresponds to x,* = 0 and the end of the slope to x,* = 160.) The dotted 
profile is for the same wave at  the same location without the sloping bottom. (b) Upper-layer 
particle-velocity profile measured by a linearized hot-film probe at x,* = 0, x: = 37 and x,* = 102 
corresponding to figure 21 (a). 

occurring and for which J was less than a beyond the midpoint of the slope.) For 
lo = 7.62 cm the results were similar to the corresponding case on the 1 :9 slope, with 
no substantial changes in either the displacement or velocity profiles and no breaking. 

When the wave reached the constant-depth region of the shelf without breaking, 
the wave appeared to be squashed into an elongated but symmetric waveform. This 
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flattened waveform was subject to considerable viscous action in the shallow shelf 
water. The waveform was subsequently shortened and the KdV profile recovered as 
the wave continued its travel on the shelf. However, by that time the wave had 
become extremely weak. No fission was observed even if the depth ratios of the shelf 
water were adjusted to values for which fission was predicted by the theory of 
Djordjevic & Redekopp (1978). 

It thus appears that the evolution of the wave as it moved from deeper water over 
a slope to the shelf was either dominated by breaking when the amplitude was 
sufficiently large, or dominated by viscous damping on the shelf itself when the 
amplitude was small. When breaking was present a major portion of the energy 
was dissipated by the breaking process, although a portion of the wave energy was 
still transmitted onto the shelf in the form of a squashed elongated wave which 
subsequently suffered the same fate as the small-amplitude non-breaking wave. For 
the 1 : 16 and 1 :9  slopes no reflected wave was detectable, for the typical amplitudes 
tested. For steeper slopes or very much larger-amplitude waves reflection was 
observed. However, these aspects are beyond the scope of the present study. 

7. Concluding remarks 
To summarize, we have found in this study that, regardless of the ratio of the upper- 

to lower-layer depth, internal solitons on the pycnocline in a fluid of total finite depth 
are governed by the KdV theory (see Part l ) ,  that the solitons break by shear 
instability, that Miles’ criterion for shear instability is applicable to  the prediction 
of incipient instability and breaking of internal solitons on the pycnocline, that the 
local Richardson number of a shoaling wave can be simply calculated, and that the 
evolution of a soliton over a slope connecting the deep water to the shallower shelf 
water is dominated by real-fluid effects so that no fission was found for weak 
stratifications of Boussinesq fluids typical in nature. 
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